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We establish the equivalence between laser speckle contrast-
based and diffuse correlation spectroscopy methods in
in vivo imaging of blood flow using the Volterra inte-
gral equation theory. We further substantiate the need
of regularized fitting while employing the multiexpo-
sure speckle contrast imaging to recover autocorrelation
function. © 2020 Optical Society of America

https://doi.org/10.1364/0L.397979

Laser speckle contrast imaging (LSCI) is a full-field imaging
technique that quantifies the surface blood flow (<1 mm depth)
by uniformly illuminating the surface of tissue with a laser and
imaging it with a camera [1]. A multiexposure-based speckle
contrast imaging system, shortly termed as MESI, is used to
quantify the absolute blood flow, by fitting the multiexposure
speckle contrast against appropriate single scattering models [2].
On the other hand, deep tissue blood flow is quantified using
diffuse wave spectroscopy (DWS) or diffuse correlation spec-
troscopy (DCS), with a focused laser source illumination and
avalanche photodiode (APD) or photomultiplier tube (PMT),
employed to measure intensity speckles [3,4]. Here, large source
detector (SD) separations (few centimeters) are often employed
to collect the diffused photons. The normalized autocorrelation
of the intensity speckles, g, is related to the deep tissue blood
flow through correlation diffusion equation (CDE) [3,4].

In order to reduce the complexity of measurement system
and expenses associated, simultaneous measurement of sev-
eral speckles using array detectors like charge-coupled device
(CCD)/complementary metal-oxide semiconductor (CMOS)
or single-photon avalanche diode (SPAD) cameras have been
used in methods like diffuse speckle contrast analysis (DSCA)
[5] and speckle contrast optical spectroscopy (SCOS) [6].
SCOS utilizes multidistance and multiexposure speckle contrast
data to measure deep tissue blood flow in the human hand [6]
and adult human brain [7]. Several works are reported recently
in employing high frame rate CCD/CMOS/SPAD cameras to
directly measure the intensity autocorrelation for both surface
and deep tissue blood flow [8—11]. All these methods rely upon
the high frame rate of the camera to compute autocorrelation of
the intensity speckles captured by each pixel of the camera.
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All the above-mentioned work establishes the fact that both
speckle contrast and intensity autocorrelation carry informa-
tion about the blood flow although the equivalence of the two
approaches is not well-studied. In other words, is it possible
to recover either of the two quantities, i.e., speckle contrast or
intensity autocorrelation, given the other? This was addressed
partially via an experimental and computational approach
in [12,13], where a low frame rate camera (<100 frames per
second) has been used to measure both the surface and deep
tissue blood flow by recovering the autocorrelation function
from multiexposure speckle contrast data. Although it is easy
to compute the speckle contrast from the measured intensity
autocorrelation, the recovery of the intensity autocorrelation
from speckle contrast is not trivial.

In this work, using Volterra integral equation (VIE) theory,
we establish the fact that under certain conditions on the speckle
contrast data, the recovery of blood flow using both speckle
contrast and field/intensity autocorrelation is equivalent. In
other words, we show that given multiexposure speckle contrast
data, it is possible to uniquely recover the field autocorrelation.
We also establish the need of Tikhonov regularization to solve
this problem due to the associated ill-posedness in the sense of
Hadamard.

The relation connecting speckle contrast, «, to the
normalized field autocorrelation, g1, is given by [14]

2 T
KX, T) = —7'? /(; (1 - %) gi(r, v)dr. (1)

Here 7 is the SD separation, 7 is the camera exposure time,
7 is the correlation delay time, and B is a constant that depends
on the collection optics. Although g; depends on every SD
separation, the following analysis is independent of 7; hence,
we drop this variable from Eq. (1). The speckle contrast-based
flow measurement utilizes either single or multiexposure speckle
contrast data. A direct fit of the measured multiexposure or
multdistance speckle contrast against theoretical flow models
to quantify blood flow is usually attempted. In order to analyze
whether this is equivalent to the correlation measurement,
where g5 (or g; via Siegert relation) can be measured directly, we
pose the following question: is it possible to recover the function
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g1 forall 7, given the multiexposure speckle contrast data? Using
the theory of VIE, we prove that itis indeed possible. To comply
with the standard notations of the VIE theory, we adopt a slight
change in notations, to rewrite the Eq. (1), in the form of VIE of
first kind, which is

T
Kz(T)=2,3/ K(T, t)u(r)dr, 2
0

where the kernel is defined as K (7T, 1) = iT —zandu= g7
The VIE theory states the conditions under which the function
u can be retrieved for all correlation delay, 7, given the data, «,
for all exposure times, 7. The existence and uniqueness of VIE
of first kind are proved by converting it into VIE of second kind
and applying the theorem below:

Theorem 1: Let / = [0, M]land D={(7,7):0<t<T<
M}. Let k € C(I) and K € C(D), i.e., both the data and the
kernel are continuous functions in appropriate domains. Then,
there exists a unique solution # € C(J) to VIE of second kind.

Proof: For proof please, see Theorem 1.2.3 in page 5 of
Ref. [15].

In order to apply above theorem to Eq. (2), we have to convert
the VIE of first kind to that of second kind by differentiating
Eq. (2), with respect to 7. Additionally, we need other condi-
tions to be followed on both data, «, and Kernel, K. We first
consider the condition that « (0) = 0, which is required to sat-
isfy the continuity of the data at the origin. The following result
shows thatitisin indeed not satisfied.

Lemma 1: Given the relaton in Eq. (2), we have
limy—o 2 f," K(T, ©)u(r)dr = u(0).

Proof: Let u be continuous at origin, which implies, for a
given € > 0, there existsa zy € / such that|#(t) — #(0)| < € for

all0 < t < #. Since % fOT(T— 7)u(0)dt = #(0), we have

T 2e [T
/ (T —1)(u(r) — u(0))dt 5—/ (T —1)dr =€.
0 7 Jo

2
T2
The above result gives «2(0)=Bu(0)#0 because

#(0) = g2(0) = 1. Hence, we modify the left-hand side of
Eq. (2) to (1) = T*«*(T), for which ;imok = 0. With the

new kernel, 1%( T, 1) = T — 7, we have the modified version of
Eq' (2))

T
/zzz,s/ K(T, t)u(t)dr. (3)
0

Theorem 2: Let u € C(1), & € C*(I), and £(0) = %£.(0) =
0. Then, Eq. (3) hasa unique solution # € C(J).
Proof: Differentiate Eq. (3) with respect to 7 to get
di d [T .
— =28— K(T, d
T ﬂdT,/(; (7, Du(r)dr

T T
=28 (J%(T, T)u(T) +/ u(r)dt) =2ﬂ/ u(t)dr.
0 0

Since the Kernel is zero for 7= 7, i.e., K(T, T) = 0, we can-
notapply Theorem 1 directly; hence, we proceed to differentiate
Eq. (3) once again to get

a

d T
T _2,3d_Tf0 u(v)dt =2Bu(T), (4)
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and the existence of unique solution follows from Theorem 1.

The Eq. (1) can be modified, through Siegert’s relation [4],
as k2(T) + 1= % fOT(I — 7)g2(t)dr. All the above obser-

vations and results are equally applicable to this equation as
well.
The additional conditions on the data that is & € C*(])

(i.e., both Z—KT and 2’,27'2 exist and are continuous) such that
k(0) = Z—KT(O) = 0 are essential to guarantee a unique solution
for this problem. Thus, the condition under which the multi-
exposure speckle contrast data can uniquely recover the field
autocorrelation is that the data should be twice differentiable in
domain I. In fact, if # is a continuous function, i.e., # € C(I),
then by the fundamental theorem of calculus, & is continu-
ous and differentiable, which, in turn, implies k € C 2(1).
Additionally, the multiexposure data « should be modified to ¥
in order to satisfy the continuity at the origin. As evident from
the proof, an equivalent problem to Eq. (3) is the second-order
ordinary differential equation in ¥, i.e., 527’; =2Bu(T) with
two initial conditions ¥ (0) = Z’—KT(O) = 0. However, this for-
mulation is seldom used for the numerical inversion due to the
presence of noise as discussed below.

We now consider the ill-posedness associated with this
problem in the sense of Hadamard [15,16]. The additional
conditions on the data, which are K (0) = j—';(O) =0, indicate
the need of continuity at the origin. This condition is often
violated as the camera is often associated with electronic noise at
the lower exposures. Itis clear from Eq. (4) that  is second-order
differential of the multiexposure speckle contrast data, which
implies that the presence of noise will severely affect the retrieval
of field autocorrelation. The class of VIEs with kernel such that
K(T, T)=0 and %(T, T) #0 are called p-smoothening
problems with @ = 2. With a larger value of u, the associated
ill-posedness is larger. Hence, this problem is posed in the inte-
gral form itself as given in Eq. (3) and is solved using Tikhonov
regularization. The Tikhonov regularized problem seeks the
solution for

T
Au(T) —u,) +2p / K(T,Du(t)dt =k + N,  (5)
0

where A is the regularization parameter and /V is the measure-
ment noise. In [12], we have experimentally found that the
Tikhonov regularized problem to recover field aurocorrela-
tion is still numerically unstable and requires prior, which is
u,=u(0) = £7(0) = 1. The convergence analysis of Tikhonov
regularized pt-smoothening problem with # priori information
is extensively studied in the [17,18].

We show the above-mentioned facts numerically by perform-
ing two simulation studies, one for surface blood flow and other
for deep tissue blood flow imaging. Here, the autocorrelation
functions used were g1(7) = exp(—rt—[) (with 7, =0.5 ms)

. _ exp(f\/tHT‘rr)
for the superficial blood flow and g;(7) = @) for

the multiple scattering case (parameters a=3.6 cm™2 and
b =7.2327 x 10% cm~2/s were chosen based on typical opti-
cal and dynamical properties of the tissue, and SD separation
was chosen to be » =2 cm). The function g1 in both cases
belongs to C(/) and, hence, & € C*(I), which can also be
easily verified analytically by substituting # = ¢? in Eq. (3).
The multiexposure speckle contrast was generated numeri-
cally for 250 exposure times ranging from 107> s to 107%s
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Fig.1. Legend: O, original g;; Ryg, recovered g; without regulari-

zation; Rp, recovered g; with regularization; (a) and (b) correspond
to the single scattering model while (c) and (d) correspond to the
multiple scattering model. In (a) and (c), the original and recovered g,
are shown and are comparable to one another. Note that in this case,
speckle noise was not added to speckle contrast data. In (b) and (d),
the original and recovered g, is shown in the case, where speckle noise
was added to multiexposure speckle contrast data. It can be seen that
when regularization was not used, the g; recovered does not match
with original g1, and in the case when regularization was used, g; is
comparable to that of the original g;.

and 1077 s to 0.24 ms for single scattering and multiple scat-
tering models, respectively. Speckle noise was added by using
the noise model given in [19], where the standard deviation is
o =k (VK2 + 0.5)/ﬁ. Here, P is the number of samples
(camera pixels), which is taken to be 50,000 for this simulation.
Using a mutistep method [12,20], we discretize Eq. (3), and
the resulting linear system of equations was solved by Tikhonov

Vol. 45, No. 14/ 15 July 2020 / Optics Letters 3995

regularization as defined in Eq. (5). The results are shown in
Fig. 1, where Figs. 1(a) and 1(b) correspond to results from
single scattering model and Figs. 1(c) and 1(d) correspond to
multiple scattering model. Figures 1(a) and 1(c) show the com-
parison between original and recovered g1, without noise being
added to speckle contrast. This shows that the measurements
obtained by speckle contrast-based methods and those of DCS
are comparable to one another establishing the equivalence.
Note that there is no regularization or @ priori information
used in this case. The mismatch in the initial portion of the
recovered ¢ is due to the error caused by numerical integration.
Figures 1(b) and 1(d) show the cases when noise was added to
speckle contrast, which distorts the recovered g; in both the
cases. It can also be seen that, when regularization was used
with prior information (x, = 1 forall 7), the recovered g1 from
multiexposure speckle contrast data is comparable to that of
the original g1. At larger values of 7, ¢g; tends to zero, which
implies that speckle contrast also tends to zero as exposure time
becomes larger. However, in practice, due to domination of
noise in speckle contrast for larger exposure times, the recovered
g1 is distorted for larger values of 7. This shows the need of
regularization and prior information in the presence of noise.
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